If I=20π∫−20π|sinx|[sinx]dx, where [⋅] denotes the greatest integer function, then the value of I is
A
−40
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
40
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
20
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
−20
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A−40 I=20π∫−20π|sinx|[sinx]dx⋯(i)
We know a∫−af(x)=a∫−af(−x) ⇒I=20π∫−20π|sinx|[−sinx]dx⋯(ii)
Adding (i) and (ii), we get ⇒2I=20π∫−20π|sinx|([sinx]+[−sinx])dx⇒I=20π∫0|sinx|([sinx]+[−sinx])dx⇒I=−40π/2∫0|sinx|dx[∵[x]+[−x]=−1,x≠Z,|sinx|has period πandsin(π−x)=sinx]⇒I=−40π/2∫0sinxdx⇒I=−40[−cosx]π/20∴I=−40