No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
4−π4
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
aπ4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
π+a4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B4−π4 Let I=∫π4−π4tan2x1+axdx ...(1) =∫π4−π4tan2(+π4−π4−x)1+a(π4−π4−x)dx =∫π4−π4tan2x1+a−xdx=∫π4−π4axtan2x1+axdx ...(2) From (1) and (2), we get 2I=∫π4−π4(1+ax1+ax)tan2xdx=∫π4−π4tan2xdx =∫π4−π4(sec2x−1)dx=(tanx−x)+π4−π4 Therefore I=4−π4