The correct option is D I>4950
k={1,2,3,...,98}
As k≤x<k+1
k+1x(x+1)=(k+1)(1x−1x+1)
∴Using Sandwich theorem,
1x+1≤k+1x(x+1)≤1x
⇒k+1∫k1x+1dx≤k+1∫kk+1x(x+1)dx≤k+1∫k1xdx
⇒98∑k=1lnk+2k+1≤98∑k=1k+1∫kk+1x(x+1)≤98∑k=1lnk+1k
⇒ln(32×43×54×⋯×10099)≤98∑k=1k+1∫kk+1x(x+1)≤(21×32×43×⋯×9998)
⇒ln50<I<ln99
∴4950<I<ln99