If I=2π∫-π4π411+esin(x)2-cos(2x)dx then 27I2 equals
Step 1: Simplify the given expression
Given: I=2π∫-π4π411+esin(x)2-cos(2x)dx …1
⇒I=2π∫-π4π411+esinπ4-π4-x2-cos2π4-π4-xdx[∵∫abf(x)dx=∫abf(a+b-x)dx]⇒I=2π∫-π4π411+esin-x2-cos2-xdx⇒I=2π∫-π4π411+e-sinx2-cos2xdx[∵sin(-x)=sin(x),cos(-x)=cos(x)]⇒I=2π∫-π4π411+1esinx2-cos2xdx⇒I=2π∫-π4π411+esinxesinx2-cos2xdx⇒I=2π∫-π4π4esinx1+esinx2-cos2xdx
Step 2: Simplify further
add equation 1 to both sides
⇒I+I=2π∫-π4π4esinx1+esinx2-cos2xdx+2π∫-π4π411+esinx2-cos2xdx⇒2I=2π∫-π4π41+esinx1+esinx2-cos2xdx⇒I=1π∫-π4π412-cos2xdx⇒I=1π∫-π4π411+2sin2xdx[∵cos2x=1-2sin2(x)]⇒I=1π∫-π4π41cos2(x)1cos2(x)+2sin2xcos2(x)dx⇒I=1π∫-π4π4sec2(x)sec2(x)+2tan2(x)dx⇒I=1π∫-π4π4sec2(x)1+tan2(x)+2tan2(x)dx[∵sec2(x)-tan2(x)=1]⇒I=1π∫-π4π4sec2(x)1+3tan2(x)dx
Step 3: Simplify further using substitution
Let tanx=t
⇒sec2(x)dx=dt
⇒I=1π∫-1111+3t2dt⇒I=13π∫-11113+t2dt⇒I=13π∫-111132+t2dt⇒I=13π3tan-13t-11[∵∫1a2+x2dx=1atan-1xa]⇒I=13π3tan-13(1)-tan-13(-1)⇒I=13π3tan-13+tan-13⇒I=13π23×π3⇒I=233
Step 4: Solve for the required value
27I2=272332⇒27I2=27427⇒27I2=4
Hence, the value of 27I2 is 4.