If Im=mπ∫0x|sinx|ecos4xdx and Jn=nπ∫0|cosx|ecos4xdx, where m,n∈Z, then
(Here, [k] denotes the greatest integer less than or equal to k.)
A
[I1J1]=1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
[I2J2]=3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
[I2J1]=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
[I3J3]=4
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D[I3J3]=4 Im=mπ∫0x|sinx|ecos4xdx x→mπ−x, we get Im=mπ∫0(mπ−x)|sinx|ecos4xdx
Adding both, we get 2Im=mπmπ∫0|sinx|ecos4xdx⇒2Im=m2ππ∫0|sinx|ecos4xdx⇒2Im=2m2ππ/2∫0sinxecos4xdx∴Im=m2ππ/2∫0sinxecos4xdx