If Im,n=∫xm(lnx)ndx, then Im,n−xm+1m+1(lnx)n=
(where m,n∈N;m,n≥1)
A
mn+1⋅Im,n−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
nm+1⋅Im−1,n−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
−mn+1⋅Im−1,n−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
−nm+1⋅Im,n−1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D−nm+1⋅Im,n−1 Given : Im,n=∫xm(lnx)ndx
Let u=(lnx)n,v=xm ⇒Im,n=∫(u⋅v)dx
Now applying integration by part, =u⋅∫vdx−∫(dudx⋅∫vdx)dx=(lnx)n⋅xm+1m+1−∫n(lnx)n−1⋅1x⋅xm+1m+1dx=(lnx)n⋅xm+1m+1−nm+1∫xm(lnx)n−1dx ⇒Im,n=(lnx)n⋅xm+1m+1−nm+1⋅Im,n−1 ∴Im,n−(lnx)n⋅xm+1m+1=−nm+1⋅Im,n−1