The correct option is A −[cotx+cot2x2+cot3x3+cot4x4]+C
For, ∫cotnxdx,n≥2
In+In−2=−cotn−1xn−1+C
Now, on putting n=2,3,4 and 5 in the above expression;
we have,
I2+I0=−cotx+C0I3+I1=−cot2x2+C1I4+I2=−cot3x3+C2I5+I3=−cot4x4+C3
Now adding all, we get
I0+I1+2(I2+I3)+I4+I5=−[cotx+cot2x2+cot3x3+cot4x4]+C