Byju's Answer
Standard XII
Mathematics
Property 6
If In=∫0π/4ta...
Question
If
I
n
=
π
4
∫
0
tan
n
x
d
x
,
then
1
I
3
+
I
5
is equal to
Open in App
Solution
I
n
=
π
4
∫
0
tan
n
x
d
x
For
n
≥
2
,
n
∈
I
, we can write
⇒
I
=
π
4
∫
0
(
sec
2
x
−
1
)
tan
n
−
2
x
d
x
⇒
I
=
[
tan
n
−
1
x
n
−
1
]
π
4
0
−
π
4
∫
0
tan
n
−
2
x
d
x
⇒
I
n
=
1
n
−
1
−
I
n
−
2
Now, putting
n
=
5
, we get
I
5
=
1
4
−
I
3
⇒
I
3
+
I
5
=
1
4
∴
1
I
3
+
I
5
=
4
Suggest Corrections
0
Similar questions
Q.
If
I
n
=
∫
π
/
4
0
tan
n
(
x
)
d
x
then
I
2
+
I
4
,
+
I
3
+
I
5
,
+
I
4
+
I
6
,
.
.
.
are in ?
Q.
If
I
n
=
∫
tan
n
x
d
x
then
I
0
+
I
1
+
2
(
I
2
+
I
3
+
.
.
.
.
+
I
8
)
+
I
9
+
I
10
equals
(
n
∈
N
)
Q.
If
I
n
=
∫
π
/
4
0
t
a
n
n
x
d
x
, then
I
2
+
I
4
,
I
3
+
I
5
,
I
4
+
I
6
,
I
5
+
I
7
,....... are in
Q.
Assertion :If
I
n
=
∫
tan
n
x
d
x
, then
6
(
I
7
+
I
5
)
=
tan
6
x
Reason: If
I
n
=
∫
tan
n
x
d
x
then
I
n
=
tan
n
−
1
x
n
−
I
n
−
2
∀
n
Q.
If
I
n
=
I
0
π
/
4
t
a
n
n
X
d
x
then
1
I
2
+
I
4
1
I
3
+
I
5
1
I
5
+
I
6
View More
Explore more
Property 6
Standard XII Mathematics
Solve
Textbooks
Question Papers
Install app