The correct option is D π/2∫0sin2nθsin2θ dθ=nπ2
In+1−In=π∫0(1−cos(n+1)x)−(1−cos(nx))1−cosx dx
=π∫0cos(nx)−cos(n+1)x1−cosx dx
=π∫02sin(nx+x2)sinx22sin2x2 dx
⇒In+1−In=π∫0sin(nx+x2)sinx2 dx ⋯(1)
Putting n→n+1
In+2−In+1=π∫0sin(nx+3x2)sinx2 dx ⋯(2)
Subtraction (1) from (2),
In+2+In−2In+1=π∫0sin(nx+3x2)−sin(nx+x2)sinx2 dx
=π∫02cos(n+1)x⋅sinx2sinx2 dx
=2π∫0cos(n+1)x dx=2n+1[sin(n+1)x]π0⇒In+2+In−2In+1=0
Therefore, In,In+1,In+2 are in A.P.
Now,
I0=0I1=π
So, the common difference is π
In=I0+(n+1−1)π=nπ
Let
U=π/2∫0sin2nθsin2θ dθ⇒U=π/2∫01−cos2nθ1−cos2θ dθ
Putting 2θ=x⇒2dθ=dx
⇒U=12π∫01−cosnx1−cosx dx=nπ2
Alternate Solution:
In=π∫01−cosnx1−cosx dx
I0=0I1=π∫01 dx=π
I2=π∫01−cos2x1−cosx dx
=π∫0sin2xsin2(x/2) dx
=π∫04sin2(x/2)cos2(x/2)sin2(x/2) dx
=π∫02(1+cosx) dx
=2[x+sinx]π0
=2π
So, the common difference is π.
∴In=I0+(n+1−1)π=nπ
Let
U=π/2∫0sin2nθsin2θ dθ⇒U=π/2∫01−cos2nθ1−cos2θ dθ
Putting 2θ=x⇒2dθ=dx
⇒U=12π∫01−cosnx1−cosx dx =12In =nπ2