Given :(n+k)⋅In=−xn−1(a2−x2)p+(n−1)a2⋅In−2⋯(i)
and In=∫xn√a2−x2dx =−12∫xn−1(−2x⋅√a2−x2)dx
Let u=xn−1,v=−2x⋅√a2−x2 and applying integration By part
⇒−2In=xn−1⋅23(a2−x2)32−∫(n−1)⋅xn−2⋅23(a2−x2)32dx=xn−1⋅23(a2−x2)32−23⋅(n−1)∫xn−2⋅(a2−x2)(a2−x2)12dx=xn−1⋅23(a2−x2)32−23⋅(n−1)∫(a2⋅xn−2−xn)(a2−x2)12dx=xn−1⋅23(a2−x2)32−23⋅(n−1)[a2⋅In−2−In]
⇒−3In−(n−1)In=xn−1(a2−x2)32−(n−1)⋅a2⋅In−2
∴(n+2)In=−xn−1(a2−x2)32+(n−1)⋅a2⋅In−2
Comparing with (i) we get, k=2,p=32
∴3k−2p=3