wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If In=π/40tannxdx, then prove that (n+2014)(In+2013+In+2015)=1.

Open in App
Solution

In=π/40tannxdx
I=(n+2014)[I(n+2013)+I(n+2015)]
$=(n+2014)\left\{\overset{\pi .4}{\underset{0}{\displaystyle \int}}\tan^{n+2013}xdx+\overset{\pi /4}{\underset{0}{\displaystyle\int}}\tan^{n+2015}xdx\right\}$
$=(n+2014)\left\{\overset{\pi /4}{\underset{0}{\displaystyle\int}}(\tan^{n+2013}x+\tan^{n+2015}x)\right\}$
=(n+2014)π/40tann+2013x[1+tan2x]dx
=(n+2014)π/40tann+2013xsec2xdx
Now taking tanx=t
sec2xdx=dt
If x=π4 then t=tanπ4
t=1
and if x=0 then t=tan0
t=0
I=(n+2014)10tn+2013dt
=(n+2014)[tn+2014n+2014]10
=(1)n+2014=1
=1
I=1.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Ozone Layer
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon