In=π/4∫0tannxdx
∴I=(n+2014)[I(n+2013)+I(n+2015)]
$=(n+2014)\left\{\overset{\pi .4}{\underset{0}{\displaystyle \int}}\tan^{n+2013}xdx+\overset{\pi /4}{\underset{0}{\displaystyle\int}}\tan^{n+2015}xdx\right\}$
$=(n+2014)\left\{\overset{\pi /4}{\underset{0}{\displaystyle\int}}(\tan^{n+2013}x+\tan^{n+2015}x)\right\}$
=(n+2014)π/4∫0tann+2013x[1+tan2x]dx
=(n+2014)π/4∫0tann+2013x⋅sec2xdx
Now taking tanx=t
∴sec2xdx=dt
If x=π4 then t=tanπ4
∴t=1
and if x=0 then t=tan0
∴t=0
∴I=(n+2014)1∫0tn+2013⋅dt
=(n+2014)[tn+2014n+2014]10
=(1)n+2014=1
=1
∴I=1.