wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If In=cosnxdx, then show that In=1ncosn1xsinx+n1nIn2 and from n2 deduce the value of cos4xdx.

Open in App
Solution

Given:- In=cosnxdx
To prove:- In=1nsinxcosn1xn1nIn2
Proof:-
In=cosnxdx
In=cosx(cosnx)dx
In=sinxcosn1xsinx((n1)cosn2x(sinx))dx
In=sinxcosn1x+(n1)sin2xcosn2xdx
In=sinxcosn1x+(n1)(1cos2x)cosn2xdx
In=sinxcosn1x(n1)cosn2xdx(n1)cosnxdx
In+(n1)In=sinxcosn1x(n1)cosn2xdx
nIn=sinxcosn1x(n1)In2
In=1nsinxcosn1xn1nIn2
Hence proved.
Now,
cos4xdx=I4
I4=14sinxcos3x34I2.....(1)
Now,
I2=12sinxcosx12I0
I2=12(sinxcosxx+C)(I0=dx=x+C)
Substituting the value of I2 in equation (1), we have
I4=14sinxcos3x34(12(sinxcosxx+C))
I4=14sinxcos3x32sinxcosx38x+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Composite Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon