If In=∫∞0e−x(sinx)ndx;(n>1) then the value of 101I1010I8 is ?
A
9
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
10
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
11
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A 9 In=(e−x(sinx)n−1)∞0+∫∞0n(sinx)n−1e−xcosxdx=0+n((sinx)n−1cosxe−x−1)∞0+n∫∞0[(sinx)n−1(−sinx)+cox(n−1)cox(sinx)n−2cosx]e−xdx=n∫∞0[−sinx+(n−1)(1−sin2x)(sinx)n−2]e−xdx=n(n−1)n2+1In−2∴101I10IS=101×10×9102+1=90∴110I10IS=9