In=In=π0∫0cosnx cos nx dx
In=[cosnx sin nxn]π20−π2∫0n cosn−1x (−sin x).sinnxndx
In=0+π2∫0cosn−1x sinx sinnx dx
cos (n−1)x=cos (nx−x)=cosnx cosx+sinnx sinx
In=π2∫0 cosn−1x (cos(n−1)x−cosnxcosx)dx
In=I(n−1)−In
⇒2In=In−1
∴I2I1=12,I3I2=12,I4I3=12,I5I4=12,....I8I7=12
I8I4=116⇒√I4I8=4