If In=∫tannxdx,thenI0+I1+2(I2+...I8)+I9+I10, is equal to
A
∑9n=1tannxn
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
1+∑8n=1tannxn
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
∑9n=1tannxn+1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
∑10n=2tannxn+1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A∑9n=1tannxn We have In=∫tannxdx=∫tann−2x(sec2x−1)dx=tann−1xn−1−In−2i.e.In−2+In=tann−1xn−1(n≥2) Thus, we have I0+I1+2(I2+....+I8)+I9+I10=(I0+I2)+(I1+I3)+(I2+I4)+(I3+I5)+(I4+I6)+(I5+I7)+(I6+I8)+(I7+I9)+(I8+I10).=∑10n=2tann−1xn−1=∑9n=1tannxn