The correct option is A In=tann−1(x)n−1−In−2
In=∫tann x dxIn=∫tann−2 x. tan2(x) dx
Or In=∫tann−2 x. (sec2(x)−1) dx
Or In=∫tann−2 x. (sec2(x) dx−∫tann−2(x) dx....(1)
Let I=∫tann−2 x. (sec2(x) dx
Let’s substitute tan(x) = t
⇒sec2(x). dx=dtI=∫tn−2. dt
Or I=tn−1n−1
Or I=tann−1(x)n−1
Substituting I=tann−1(x)n−1 in 1st equation.
So, we’ll have
In=tann−1(x)n−1−∫tann−2 (x) dx
We can see that the integral ∫tann−2 (x) dx is is nothing but In−2
So, the relation will be
In=tann−1(x)n−1−In−2