A=⎡⎢⎣10−2−2−22341⎤⎥⎦
A2=⎡⎢⎣10−2−2−22341⎤⎥⎦×⎡⎢⎣10−2−2−22341⎤⎥⎦
=⎡⎢⎣−5−8−48122−2−43⎤⎥⎦
A3=⎡⎢⎣10−2−2−22341⎤⎥⎦×⎡⎢⎣−5−8−48122−2−43⎤⎥⎦
=⎡⎢⎣−10−10−10−16101520−1⎤⎥⎦
Given, I=pA3+qA
⇒⎡⎢⎣100010001⎤⎥⎦=p⎡⎢⎣−10−10−10−16101520−1⎤⎥⎦+q⎡⎢⎣10−2−2−22341⎤⎥⎦
⇒⎡⎢⎣100010001⎤⎥⎦=⎡⎢⎣−p+q0−10p−2q−10p−2q−16p−2q10p+2q15p+3q20p+4q−p+q⎤⎥⎦
On equating both the sides, we get
1=−p+q ...(1)0=−10p−2q ...(2)
⇒0=5p+q ...(3)
Eqn (3)−(1), gives
6p=−1
⇒p=−16, q=56