The correct options are
A 0, when n is even
B 2n−1⋅in, when n is odd
(1+i)2n−(1−i)2n(1+ω4−ω2)(1−ω4+ω2)=((1+i)2)n−((1−i)2)n(1+ω⋅ω3−ω2)(1−ω⋅ω3+ω2) =(1+i2+2i)n−(1+i2−2i)n(1+ω−ω2)(1−ω+ω2) =(2i)n−(−2i)n(−2ω2)(−2ω) =2nin[1−(−1)n]4 =⎧⎪⎨⎪⎩0,when n is even2n+1⋅in22=2n−1⋅in,when n is odd