If i=√−1, then 4+5[(−12)+i√32]334+3[−12+(i√32)]365 is equal to
A
1−i√3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
−1+i√3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
i√3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
−i√3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bi√3 Let w be the cube root of unity. ∴w3=1&1+w2+w=0 where, w=−1+i√32&w2=1−i√32 ...(1) z=4+5(−1+i√32)334+3(−1+i√32)365=4+5w334+3w365 ...{from (1)} ⟹z=4+5[(w3)111w]+3[(w3)121w2]=4+5w+3w2 ...{∵w3=1} ⟹z=w−w2 ...{∵−1=w2+w} ⟹z=−1+i√32−(−1−i√3)2=i√3 ...{from 1} Ans: C