The correct option is B I=−12
I=∫10 cos(2 cot−1√1−x1+x)dx
Put x=cos θ⇒dx=−sin θ dθ;x=0,1⇒θ=π2,0
I=−∫0π2 cos(2 cot−1√2 sin2θ22 cos2θ2)sin θ dθ=∫π20cos[2 cot−1(tan θ2)]sin θ dθ
=∫0π2 cos(2 cot−1cot(π2−θ2))sin θ dθ=∫π20cos[2(π2−θ2)]sin θ dθ
=∫π20cos(π−θ)sin θ dθ
=12∫π202 sin θ cos θ dθ=−12∫π20 sin2θ dθ=14[cos 2θπ20=14(−1−1)=−12