If I1=∫01(1-x50)100dx and I2=∫01(1-x50)101dx such that I2=αI1 then α equals to:
50505049
50505051
50515050
50495050
Explanation for correct option
Given: I1=∫01(1-x50)100dx and I2=∫01(1-x50)101dx
I2=∫01(1-x50)101dx⇒I2=∫01(1-x50)(1-x50)100dx⇒I2=∫01(1-x50)100dx-∫01(x50)(1-x50)100dx⇒I2=I1-∫01(x)(x49)(1-x50)100dx....1
Applying integration by parts i.e. ∫uvdx=u∫vdx-∫u'∫vdxdx
⇒∫01(x)(x49)(1-x50)100dx=x∫01(x49)(1-x50)100dx-∫01(1)∫01(x49)(1-x50)100dxdx
Let 1-x50=t
-50x49dx=dt⇒x49dx=-dt50
⇒∫01(x)(x49)(1-x50)100dx=x∫01150∫01t100dt-∫01(1)∫01150∫01t100dtdx
=x150(1-x50)10110101-150∫01(1-x50)101101dx=(1)150(1-150)101101-0-15050I2=0-15050I2
⇒∫01(x)(x49)(1-x50)100dx=-15050I2
Substituting the above in equation 1,
⇒I2=I1-I25050⇒I2+I25050=I1⇒50515050I2=I1⇒I2=50505051I1
Now comparing it with I2=αI1⇒α=50505051.
Hence, option(B) i.e. 50505051 is correct.