wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If If xcosθ=ycos(θ+2π3)=zcos(θ+4π3), then write the value of 1x+1y+1z.

Open in App
Solution

Let, xcosθ=ycos(θ+2π3)=zcos(θ+4π3)=k
xcosθ=k,ycos(θ+2π3)=k and,
zcos(θ+4π3)=k
1x=cosθk,1y=cos(2π3+θ)k <br/>
and, 1z=cos(4π3+θ)k<br/>
Now, 1x+1y+1z=cosθk+cos(2π3+θ)k+cos(4π3+θ)k<br/>
1x+1y+1z=1k[cosθ+cos(2π3+θ)+cos(4π3+θ)]<br/>
=1k[cosθ+cos{π2+(π6+θ)}cos{π+(π3+θ)}]=1k[cosθsin(π6+θ)cos(π3+θ)]<br/>
=1k[cosθ(sinπ6cosθ+cosπ6sinθ)(cosπ3×cosθsinπ3×sinθ)]<br/>
=1k[cosθ(12cosθ+32sinθ)(12cosθ32sinθ)]<br/>
=1k[cosθ12cosθ32sinθ12cosθ+32sinθ]<br/>
=0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon