Let, xcosθ=ycos(θ+2π3)=zcos(θ+4π3)=k
⇒xcosθ=k,ycos(θ+2π3)=k and,
zcos(θ+4π3)=k
⇒1x=cosθk,1y=cos(2π3+θ)k <br/>
and, 1z=cos(4π3+θ)k<br/>
Now, 1x+1y+1z=cosθk+cos(2π3+θ)k+cos(4π3+θ)k<br/>
⇒1x+1y+1z=1k[cosθ+cos(2π3+θ)+cos(4π3+θ)]<br/>
=1k[cosθ+cos{π2+(π6+θ)}cos{π+(π3+θ)}]=1k[cosθ−sin(π6+θ)−cos(π3+θ)]<br/>
=1k[cosθ−(sinπ6cosθ+cosπ6sinθ)−(cosπ3×cosθ−sinπ3×sinθ)]<br/>
=1k[cosθ−(12cosθ+√32sinθ)−(12cosθ−√32sinθ)]<br/>
=1k[cosθ−12cosθ−√32sinθ−12cosθ+√32sinθ]<br/>
=0