If in a Δ ABC, 2b2=a2+c2, then sin3BsinB is equal to
(c2−a22ca)2
sin3BsinB=3sinB−4sin3BsinB=3−4sin2B=−1+4(a2+c2−b22ac)2=−1+4(a2+c2−b2)24(ac)2=−1+a2+c2−a2+c22(ac)2 (given 2b2=a2+c2)=−1+(a2+c22)2(ac)2=−4a2c2+a4+c4+2a2c24a2c2=(c2−a2)24(ac)2=(c2−a22ac)2