If in a Δ ABC, a2+b2+c2=8R2, where R = circumradius, then the triangle is
equilateral
isosceles
right angled
No such triangle exists
a2+b2+c2=8R2⇒sin2A+sin2B+sin2C=2⇒cos2A+cos2B+cos2C+1=0∴−4cosA.cosB.cosC=0⇒A or B or C=π2
In In ΔABC, if 8R2=a2+b2+c2, then the triangle is
In a triangle ABC, if b + c = 2a and ∠ A=600, then Δ ABC is