wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If in a ΔABC, cos2 A+cos2 B+cos2 C=1, prove that the triangle is right angled.

Open in App
Solution

Let ΔABC be any triangleIn ΔABCcos2 A+cos2 B+cos2 C=1 cos2 A+cos2 B+cos2 [π(B+A)]=1 ( A+B+C=λ) cos2 A+cos2 B+cos2 (B+A)=1 cos2 A+cos2 B=1cos2 (B+A) cos2 A+cos2 B=sin2 (B+A) cos2 A+cos2 B=(sin A cos B cos A sin B)2 cos2 A+cos2 B=sin2 A cos2 B+cos2 A sin2 B+2 sin A sin B cos A cos B 2cos2 A cos2 B=2sin A sinB cosA cosB cosA cosB=sin A sinB=0cos (A+B)=0cos (A+B)=cos 90A+B=90 C=90 ( A+B+C=180)Hence, ΔABC is right angled.


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon