wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If in a ΔABC,a2b2a2+b2=sin(AB)sin(A+B), prove that it is either a right-angled or an isosceles triangle.

Open in App
Solution

According to sine rule,asin A=bsin B=csin C=k

Then,a2b2a2+b2=sin(AB)sin(A+B)

k2 sin2 Ak2 sin2 Bk2 sin2 A+k2 sin2 B=sin(AB)sin(A+B) [fromEq.(i)]

sin2 Asin2 Bsin2 A+sin2 B=sin(AB)sin(A+B)

sin(A+B)sin(AB)sin2 A+sin2 B=sin(AB)sin(A+B)

sin(A+B)sin(AB)sin2 A+sin2 Bsin(AB)sin(A+B)=0

sin(AB)[sin(AB)sin2 A+sin2 B1sin(A+B)]=0

Either sin(AB)=0

OR

sin2(A+B)=sin2 A+sin2 B

AB=0 or sin2 C=sin2 A+sin2 B

[sin(A+B)=sin C]

A=B or c2k2=a2k2+b2k2 [from Eq,(i)]

A=B or a2+b2=c2

Hence,it is either triangle is isosceles or right-angled.


flag
Suggest Corrections
thumbs-up
7
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving QE using Quadratic Formula
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon