If in a ΔABC,a2−b2a2+b2=sin(A−B)sin(A+B), prove that it is either a right-angled or an isosceles triangle.
According to sine rule,asin A=bsin B=csin C=k
Then,a2−b2a2+b2=sin(A−B)sin(A+B)
⇒k2 sin2 A−k2 sin2 Bk2 sin2 A+k2 sin2 B=sin(A−B)sin(A+B) [fromEq.(i)]
⇒sin2 A−sin2 Bsin2 A+sin2 B=sin(A−B)sin(A+B)
⇒sin(A+B)sin(A−B)sin2 A+sin2 B=sin(A−B)sin(A+B)
⇒sin(A+B)sin(A−B)sin2 A+sin2 B−sin(A−B)sin(A+B)=0
⇒sin(A−B)[sin(A−B)sin2 A+sin2 B−1sin(A+B)]=0
⇒Either sin(A−B)=0
OR
sin2(A+B)=sin2 A+sin2 B
⇒A−B=0 or sin2 C=sin2 A+sin2 B
[∵sin(A+B)=sin C]
⇒A=B or c2k2=a2k2+b2k2 [from Eq,(i)]
⇒A=B or a2+b2=c2
Hence,it is either triangle is isosceles or right-angled.