The correct option is
A equilateral
Putting
cosA=b2+c2−a22bc etc. in the given relation, we get
b2+c2−a22bc+c2+a2−b22bc+a2+b2−c22ab−32=0
⇒a(b2+c2−a2)+b(c2+a2−b2)+c(a2+b2−c2)=3abc
⇒a(b2+c2)+b(c2+a2)+c(a2+b2)=a3+b3+c3+3abc
Now, subtract 6abc from each side,
∴a(b−c)2+b(c−a)2+c(a−b)2=a3+b3+c3−3abc
=(a+b+c)(a2+b2+c2−ab−bc−ca)
Multiply both sides by 2
∴2a(b−c)2+2b(c−a)2+2c(a−b)2=(a+b+c)[(b−c)2+(c−a)2+(a−b)2]
⇒(b−c)2(b+c−a)+(c−a)2(c+a−b)+(a−b)2(a+b−c)=0 ...(1)
In a triangle, b+c−a>0 etc. hence (1) will hold good if each factor is zero.
Now, (b−c)2(b+c−a)=0 gives b−c=0 since b+c−a≠0.
Similarly, c−a=0 and a−b=0.
∴a=b=c. Hence, the triangle is equilateral.