The correct option is B G.P.
Let the 3n terms of G.P. be
a,ar,ar2,…,arn−1,arn,arn+1,arn+2,…,ar2n−1,ar2n,ar2n+1,ar2n+2,…,ar3n−1
Then,
S1=a+ar+ar2+…+arn−1=a(1−rn)1−r
S2=arn+arn+1+arn+2+…+ar2n−1=arn(1−rn)1−r
S3=ar2n+ar2n+1+ar2n+2+…+ar3n−1=ar2n(1−rn)1−r
Now, S22=a2r2n(1−rn)2(1−r)2
⇒S22=a(1−rn)(1−r)×ar2n(1−rn)(1−r)⇒S22=S1×S3
Hence, S1,S2,S3 are in G.P.