The correct options are
A tanA=3+√52
B tanA=3−√52
As △ABC is right angle, so
A+B=π2
Now,
tanA+tanB+tan2A+tan2B=10⇒tanA+tan(π2−A)tan2A+tan2(π2−A)=10⇒tanA+cotA+tan2A+cot2A=10⇒(tanA+cotA)2−2+(tanA+cotA)=10⇒(tanA+cotA)2+(tanA+cotA)−12=0
Assuming (tanA+cotA)=t, so
⇒t2+t−12=0⇒(t+4)(t−3)=0⇒t=−4,3
As A is angle of a triangle, so both tanA and cotA are positive, so
tanA+cotA=3⇒tan2A−3tanA+1=0⇒tanA=3±√9−42∴tanA=3±√52