If in a right angled triangle ABC, 4sinAcosB−1= 0 and tanA is real, then
4sinAcosB=1
Or
2sinA.cosB=12
Or
sin(A+B)+sin(A−B)=12
Or
sin(π−C)+sin(A−B)=12
Or
sin(C)+sin(A−B)=12
Or
sin900+sin(A−B)=12
Or
sin(A−B)=−12
Or
A−B=−300.
And A+B=900
Hence
A=300 and B=600.
Hence the angles are 300,600,900.