If in a ∆ABC, 4sinA=4sinB=3sinC, then cosC is equal to
13
19
127
18
Explanation for the correct option.
Find the value of cosC:
Given,
4sinA=4sinA=3sinC.
Let 4sinA=4sinB=3sinC=k
⇒sinA=k4,sinB=k4and sinC=k3.
Now use sine rule,
asinA=bsinB=csinC=λ⇒a=λsinA,b=λsinB,c=λsinC
Substituting the values of sinA,sinBand sinC.
⇒a=λk4,b=λk4,c=λk3
Let, λk=p.
⇒a=p4,b=p4,c=p3
Now, we know that,
cosC=a2+b2-c22ab
Substituting the values of a,b and c.
cosC=p42+p42-p322p4p4=p216+p216-p29p28=116+116-1918=19
Hence, the correct option is B.