If in a △ABC,a4+b4+c4=2a2b2+b2c2+2c2a2, then sinA is equal to
A
1√2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
12
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
√32
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
√3+12√2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C12 ∵cosA=b2+c2−a22bc ⇒b2+c2−a2=2bccosA Squaring both sides, we get ⇒(b2+c2−a2)2=4b2c2cos2A b4+c4+a4+2b2c2−2c2a2−2a2b2=4b2c2cos2A Given: a4+b4+c4=2a2b2+b2c2+2c2a2 ⇒(a4+b4+c4)+2b2c2−2c2a2−2a2b2=4b2c2cos2A ⇒(2a2b2+b2c2+2c2a2)+2b2c2−2c2a2−2a2b2=4b2c2cos2A ⇒3b2c2=4b2c2cos2A ⇒3=4cos2A ⇒cos2A=34 ⇒1−sin2A=34 ⇒sin2A=1−34=14 ∴sinA=±12