The correct option is A A.P
Given:cosA+2cosB+cosC=2
⇒cosA+cosC=2−2cosB
Using transformation angle formulae, we have
⇒2cos(A+C2)cos(A−C2)=2(1−cosB)
Using multiple angle formula, we get
⇒2cos(A+C2)cos(A−C2)=2.2sin2(B2)
We have A+B+C=π⇒.A+C=π−B⇒A+C2=π2−B2
⇒2cos(π2−B2)cos(A−C2)=2.2sin2(B2)
⇒2sin(B2)cos(A−C2)=2.2sin2(B2)
⇒cos(A−C2)=2sin(B2)
⇒cos(A−C2)=2sin(π2−A+C2)
⇒cos(A−C2)=2cos(A+C2)
⇒cos(A−C2)cos(A+C2)=21
By componendo and dividendo method,
⇒cos(A−C2)−cos(A+C2)cos(A−C2)+cos(A+C2)=2−12+1
⇒−2sin(A−C+A+C2)sin(A−C−A−C2)2cos(A−C+A+C2)cos(A−C−A−C2)=13
⇒sin(A2)sin(C2)cos(A2)cos(C2)=13
⇒tan(A2)tan(C2)=13
⇒√(s−b)(s−c)s(s−a)√(s−a)(s−b)s(s−c)=13
⇒s−bs=13
⇒3s−3b=s
⇒2s=3b
We know that a+b+c=2s
∴a+b+c=3b
Hence,a+c=2b
∴a,b,c are in A.P