wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If in a ABC,cosA+2cosB+cosC=2 then a,b,c are in

A
A.P
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
G.P
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
H.P
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A A.P
Given:cosA+2cosB+cosC=2
cosA+cosC=22cosB
Using transformation angle formulae, we have
2cos(A+C2)cos(AC2)=2(1cosB)
Using multiple angle formula, we get
2cos(A+C2)cos(AC2)=2.2sin2(B2)
We have A+B+C=π.A+C=πBA+C2=π2B2
2cos(π2B2)cos(AC2)=2.2sin2(B2)
2sin(B2)cos(AC2)=2.2sin2(B2)
cos(AC2)=2sin(B2)
cos(AC2)=2sin(π2A+C2)
cos(AC2)=2cos(A+C2)
cos(AC2)cos(A+C2)=21
By componendo and dividendo method,
cos(AC2)cos(A+C2)cos(AC2)+cos(A+C2)=212+1
2sin(AC+A+C2)sin(ACAC2)2cos(AC+A+C2)cos(ACAC2)=13
sin(A2)sin(C2)cos(A2)cos(C2)=13
tan(A2)tan(C2)=13
(sb)(sc)s(sa)(sa)(sb)s(sc)=13
sbs=13
3s3b=s
2s=3b
We know that a+b+c=2s
a+b+c=3b
Hence,a+c=2b
a,b,c are in A.P

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Fundamental Theorem of Calculus
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon