If in a triangle ABC, cos3A+cos3B+cos3C=1, then
cos3A+cos3B+cos3C=1
cos3A+cos3B=1−cos3C
Or
2cos(3A+B2)cos(3(A−B)2)=2sin23C2
Or
cos(3π−3C2)cos(3(A−B)2)=sin23C2
Or
−sin(3C2)cos(3(A−B)2)=sin23C2
Or
sin2(3C2)+sin(3C2)cos(3(A−B)2)=0
Or
sin(3C2)[sin(3C2)+cos(3(A−B)2)]=0
Or
sin(3(C)2)=0
Or
3C2=π
Or
C=2π3
Hence obtuse angled triangle.