If in a △ABC, sin3A+sin3B+sin3C=3sinAsinBsinC, then the value of the determinant ∣∣
∣∣abcbcacab∣∣
∣∣ is equal to
A
0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
(a+b+c)3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(a+b+c)(ab+bc+ca)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A0 We have sin3A+sin3B+sin3C=3sinAsinBsinC Using sine rule in sinA=ak,sinB=bk and sinC=ckwe get a3k3+b3k3+c3k3=3abck3 ∴a3+b3+c3=3abc ⇒a3+b3+c3−3abc=0 ⇒a+b+c=0 ∣∣
∣∣abcbcacab∣∣
∣∣ C→C1+C2+C3 =∣∣
∣∣a+b+cb+c+ac+a+bbcacab∣∣
∣∣ =(a+b+c)∣∣
∣∣111bcacab∣∣
∣∣ Put a+b+c=0 ∴ Value of determinant=0∣∣
∣∣111bcacab∣∣
∣∣=0