If in a triangle a2−b2a2+b2=sin(A−B)sin(A+B), Prove that it is either a right angled or an isosceles triangle.
Open in App
Solution
sin(A−B)sin(A+B)=k2(sin2A−sin2B)k2(sin2A+sin2B) by sine formula or sin(A−B)sinC=sin(A−B)sin(A−B)sin2A+sin2B or sin(A−B)[1sinC−sinCsin2A+sin2B]=0 ∴ Either sin(A−B)=0∴A=B i.e △ is isosceles or sin2A+sin2B=sin2C or a2+b2=c2 ∴△ is right angled