The correct option is A 1155
Given that
s−a11=s−b12=s−c13=s−a+s−b+s−c11+12+13
=3s−(a+b+c)36
=3s−2s36 where a+b+c=2s
=s36
∴s−a=11s36,s−b=12s36,s−c=13s36
∴tan2A2=(s−b)(s−c)s(s−a)
=12s36×13s36s×11s36
=1333
λtan2A2=455 (given)
λ.1333=455
⇒λ=35×33=1155 (on simplification)