If in a triangle r1=r2+r3+r, prove that the triangle is right angled.
Open in App
Solution
We have
r1=r2+r3+r or r1−r=r2+r3 ⇒Δs−a−Δs=Δs−b+Δs−c ⇒=Δas(s−a)=Δ(2s−b−c)(s−b)(s−c)=Δa(s−b)(s−c) ⇒s(s−a)=(s−b)(s−c) ⇒s2−sa=s2−(b+c)s+bc ⇒2s(b+c−a)=2bc ⇒=(a+b+c)(b+c−a)=2bc ⇒(b+c)2−a2=2bc⇒b2+c2=a2 Hence, the triangle is right angled.