If in a triangle PQR, sinP,sinQ,sinR are in A.P., then prove that the altitudes are in H.P.
Open in App
Solution
Altitude PD, QE and RF are qsinR,rsinP,psinQ where p,q,r are the sides Apply sine rule. or KsinQsinR,ksinRsinP,ksinpsinQ or ksinPsinQ,sinRsinP,ksinPsinQsinRsinQ,ksinPsinQsinRsinR But sinP,sinQ,sinR are in A.P. ∴ Altitudes are in H.P.