If in a triangle PQR,sinP,sinQ,sinR are in A.P, then
Let P,Q,R be the
triangle with an altitude PD perpendicular to QR, altitude QE
perpendicular to PR, and altitude RF perpendicular to PQ.
Therefore, l(QR)=p, l(PR)=q, and
l(PQ)=r.
Also, sinP,sinQ,sinR are in A.P.
Therefore, Altitudes PD,QE, and RF will
be qsinR,rsinP, and psinQ.
Now, applying \sine rule, we get
ksinQsinR,ksinRsinP,ksinPsinQ
or ksinP×sinQ×sinRsinP,ksinP×sinQ×sinRsinQ,ksinP×sinQ×sinRsinR
But we know that, sinP,sinQ,sinR are
in A.P.
⇒ Altitudes are in H.P.