wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If in ABC, cos2 A+cos2 B+cos2 C=1, prove that the triangle is right-angled.

Open in App
Solution

Let ABC be any triangle.
In ABC,
cos2 A+cos2 B+cos2 C=1cos2 A+cos2 B+cos2 π-B+A=1 A+B+C=πcos2 A+cos2 B+cos2 B+A=1cos2 A+cos2 B=1-cos2 B+Acos2 A+cos2 B=sin2 B+Acos2 A+cos2 B=sinAcosB+cosAsinB2cos2 A+cos2 B=sin2Acos2B+cos2Asin2B+2sinAsinBcosAcosBcos2 A1-sin2B+cos2 B1-sin2A=2sinAsinBcosAcosB2cos2 Acos2B=2sinAsinBcosAcosBcos AcosB=sinAsinBcos AcosB-sinAsinB=0cos A+B=0cos A+B=cos90° A+B=90° C=90° A+B+C=180°

Hence, ABC is right angled.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon