Here,
First term =a
Common difference =d
Given:
Sm=n
⇒m2(2a+(m−1)d)=n …… (1)
Sn=m
⇒n2(2a+(n−1)d)=m ……. (2)
Subtract equation (1) from (2).
2a(n−m)+d(n2−n−m2+m)=2m−2n
2a(n−m)+d(n2−n−+mn−mn−m2+m)=−2(n−m)
(n−m)(2a+(n+m−1)d)=−2(n−m)
2a+(n+m−1)d=−2
Now,
Sm+n=(m+n)2(2a(n+m−1)d)
Sm+n=(m+n)2×(−2)
Sm+n=−(m+n)
Hence, proved.