If in an AP, the sum of first 10 terms is -150 and the sum of its next 10 terms is -550. Find the AP.
Open in App
Solution
Given,
S10=−150 S20−S10= Next 10 term S20−S10=−550 S20=−550+S10 S20=−550−150 S20=−700
Sn=n2[2a+(n−1)d]
S10=102[2a+(10−1)d]=−150
2a+9d=−30 (i) S20=−700
202[2a+19d]=−700
2a+19d=−70 (ii) eq(i)-eq(ii) (2a+9d=−30)−(2a+19d=−70) −10d=40 d=−4 2a+9d=−30 2a=−30+36 ⇒a=3 So the A.P. will be as:- a, (a+d), (a+2d), ... 3, (-1), (-5) & so on