If in an obtuse angled triangle the obtuse angle is 3π4 and the other two angles are equal to two values of θ satisfying atanθ+bsecθ=c, when |b|≤√(a2+c2), then a2−c2 is equal to
A
ac
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2ac
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
ac
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of these.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C2ac We know that A+B+C=π⇒A+C=π4 ⇒tan(A+C)=tanπ4=1 ⇒tanA+tanC1−tanAtanC=1 ⇒tanA+tanC=1−tanAtanC ............(1) ∵atanθ+bsecθ=c ⇒atanθ−c=−bsecθ Squaring both sides, we get ⇒(atanθ−c)2=(−bsecθ)2 ⇒a2tan2θ+c2−2actanθ−b2sec2θ=0 ⇒(a2−b2)tan2θ−2actanθ+(c2−b2)=0 Let tanA and tanC be the roots of the equation, ∴tanA+tanC=2aca2−b2 and tanAtanC=c2−b2a2−b2 From eqn(1) 2aca2−b2=1−c2−b2a2−b2 ⇒2aca2−b2=a2−b2−c2+b2a2−b2 ⇒2ac=a2−c2