If In ΔABC the sides opposite to angles A,B,C are denoted by a,b,c respectively, and the sides a,b,c are in A.P.
then?
A
B>60∘
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
B<60∘
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
B≤60∘
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
B=A−C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is CB≤60∘ Given that, 2b=a+c From sine rule: 2sinB=sinA+sinC 4sinB2cosB2=2sin(A+C2)cos(A−C2) 2sin(π2−A+C2)cos(π2−A+C2)=sin(A+C2)cos(A−C2) ⇒2cos(A+C2)=cos(A−C2) ⇒cos(A+C2)cos(A−C2)=12 By componendo-dividendo cos(A+C2)+cos(A−C2)cos(A+C2)−cos(A−C2)=1+21−2 ⇒cosA2cosC2sinA2sinC2=3 ⇒tanA2tanC2=13...(1) As A.M≥G.M Therefore, tanA2+tanC22≥√tanA2tanC2=1√3...(2)
In ΔABC: B2=π2−(A+C2) ⇒cotB2=tan(A+C2)=tanA2+tanC21−tanA2tanC2 cotB2≥2/√31−(1/3)=√3 [ from (1) and (2) ] Therefore, B≤60∘ Ans: C