If in â–³ABC,8R2=a2+b2+c2, then the triangle ABC is
A
right angled
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
isosceles
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
equilateral
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A right angled Given a2+b2+c2=8R2
from sine rule asinA=bsinB=csinC=2R
⇒sin2A+sin2B+sin2C=2⇒sin2A+sin2B+sin2(A+B)=2⇒sin2A+sin2B+sin2Acos2B+cos2Asin2B+2sinAsinBcosAcosB=2⇒1−cos2A+1−cos2B+sin2Acos2B+cos2Asin2B+2sinAsinBcosAcosB=2⇒2−cos2A(sin2B−1)+cos2B(sin2A−1)+2sinAsinBcosAcosB=2⇒−2cos2Acos2B+2sinAsinBcosAcosB=0⇒cosAcosB(cosAcosB−sinAsinB)=0⇒cosAcosBcos(A+B)=0⇒A=π2orB=π2orC=π2 Hence it is a right angled triangle.