The correct option is C 12
(1+x)m (1−x)n=(1+mx+m(m−1)2x2+...)×(1−nx+n(n−1)2x2+...)∴Coefficient of x=m−n=3 (given)Coefficient of x2=n(n−1)2−nm+m(m−1)2=−6 (given)⇒ n2−n−2mn+m2−m=−12⇒(m−n)2−(m+n)=−12⇒ (3)2−(m+n)=−12⇒m+n=21∴ Solving m−n=3, m+n=21, we get m=12, n=9