Given: Coefficient of 14th,15th,16th term of (1+x)n are in A.P
To find : n
equation: As we know,
the binomial eception of (a+b)n is
a+bn=nC0an+nC1an−1b1+nC2an−2b2+....nCran−rbn+.....nn0bn
so for (1+x)n=nC0(1)n+nC1(1)n−1x1+nC2(1)n−2x2+....nCnxn
Coefficient of 14th,15th,16th term are nC13,nC14,nC15
Acc. they are in A.P so
2 nC14=nC13+nC15 [If a,b,c are in A.P 2b=a+c]
2n!(n−14)! 14!=n!(n−13)! 13!+n!(n−15)! 15!
2(n−14)(n−15)!14×13!=1(n−13)(n−14)(n−15)! 13!+1(n−15)! 15×14×13!
214(n+14)=1(n−13)(n−14)+1210
1n−14[17−1n−13]=1210
1n−14[n−13−77n−91]=1210⇒n−207n2−91n−98n+1274=1210
210n−4200=7n2−189n+1274
7n2189n−210n+1274+4200=0 ⇒7n2−399n+5474=0
n2−57n+782=0
n2−34n−23n+782=0n(n−34)−23(n−34)=0
(n−23)(n−34)=0
n=23 ar 34