If in ∆ABC, (b+c)11=(c+a)12=(a+b)13, then cosA is equal to:
15
57
1935
None of these
Explanation for the correct option:
Step 1: Find the value of a+b+c.
Let (b+c)11=(c+a)12=(a+b)13=k
⇒b+c=11k...1⇒c+a=12k...2⇒a+b=13k...3
By adding 1,2,and3, we get
b+c+c+a+a+b=11k+12k+13k⇒2a+b+c=36k⇒a+b+c=18k
Step 2: Find the value of a,b,andc.
a+b+c=18k⇒13k+c=18k⇒c=5k
Similarly
a+b+c=18k⇒a+11k=18k⇒a=7k
and
a+c+b=18k⇒12k+b=18k⇒b=6k
Step 3: Apply cosine rule.
As per Cosine Rule,
2bccosA=b2+c2-a2⇒cosA=b2+c2-a22bc=36k2+25k2-49k22×30k2=12k260k2=15
Hence, option A is correct.