We have c(a+b)cos12B=b(a+c)cos12C
∴c(a+b)√s(s−b)ca=b(a+c)√s(s−c)ab
or (a+b)√c(s−b)=(a+c)√b(s−c)
Squarring,(a+b)2c(s−b)=(a+c)2b(s−c)
or s[c(a+b)2−b(a+c)2]−bc[(a+b)2−(a+c)2]=0
or s[ca2+2abc+cb2−ba2−2abc−bc2]−bc(2a+b+c)(b−c)=0
or s[bc(b−c)−a2(b−c)]−bc(b−c)(2a+b+c)=0
or (b−c)[s(bc−a2)−bc(2a+b+c)]=0
or (b−c)[s(bc−a2)−bc(2s+a)]=0
or −(b−c)[s(bc+a2)+abc]=0
Since a, b, c are all positive and so
s(bc+a2)+abc≠0
It follows that b−c=0 or b=c
Hence △ABC is isosceles.