wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If in ABC,c(a+b)cos12B=b(a+c)cos12C, prove that the triangle is isosceles.

Open in App
Solution

We have c(a+b)cos12B=b(a+c)cos12C
c(a+b)s(sb)ca=b(a+c)s(sc)ab
or (a+b)c(sb)=(a+c)b(sc)
Squarring,(a+b)2c(sb)=(a+c)2b(sc)
or s[c(a+b)2b(a+c)2]bc[(a+b)2(a+c)2]=0
or s[ca2+2abc+cb2ba22abcbc2]bc(2a+b+c)(bc)=0
or s[bc(bc)a2(bc)]bc(bc)(2a+b+c)=0
or (bc)[s(bca2)bc(2a+b+c)]=0
or (bc)[s(bca2)bc(2s+a)]=0
or (bc)[s(bc+a2)+abc]=0
Since a, b, c are all positive and so
s(bc+a2)+abc0
It follows that bc=0 or b=c
Hence ABC is isosceles.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythagorean Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon